organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-*tert*-Butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium bromide monohydrate

Hakan Arslan,^{a,b}* Don VanDerveer,^c Serpil Demir,^d İsmail Özdemir^d and Bekir Çetinkaya^e

^aDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, ^bDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, ^cDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA, ^dDepartment of Chemistry, Faculty of Science and Arts, Inönü University, Malatya, TR 44280, Turkey, and ^eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-Izmir, TR 35100, Turkey Correspondence e-mail: hakan.arslan.acad@gmail.com

Received 11 December 2008; accepted 18 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.112; data-to-parameter ratio = 14.8.

A novel *N*-heterocyclic carbene derivative, $C_{28}H_{33}N_2O_3^+$.-Br⁻·H₂O, was synthesized and characterized by elemental analysis, ¹H and ¹³C-NMR and IR spectroscopy and a singlecrystal X-ray diffraction study. Ions of the title compound are linked by $\pi \cdots \pi$ stacking interactions (face-face separation 3.441 Å) and C-H···Br and O-H···Br interactions. Intraand intermolecular C-H···O interactions are also present. The C-N bond lengths for the compound [1.329 (3), 1.325 (3), 1.389 (3) and 1.391 (3) Å] are all shorter than the average single C-N bond length of 1.48 Å, thus showing varying degrees of double-bond character.

Related literature

For the synthesis, see: Yaşar *et al.* (2008). For general background, see: Herrmann (2002); Arduengo & Krafczyc (1998); Herrmann *et al.* (1995, 1998); Navarro *et al.* (2006). For related compounds, see: Yaşar *et al.* (2008); Arslan *et al.* (2009 and references therein). For bond-length data, see: Allen *et al.* (1987).

 $\gamma = 103.57 \ (3)^{\circ}$

Z = 2

V = 1385.1 (6) Å³

Mo $K\alpha$ radiation $\mu = 1.52 \text{ mm}^{-1}$

 $0.48 \times 0.29 \times 0.26$ mm

11938 measured reflections

4860 independent reflections

3921 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 298 (2) K

 $R_{\rm int} = 0.022$

refinement

 $\Delta \rho_{\text{max}} = 0.31 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

 $C_{28}H_{33}N_2O_3^* \cdot Br^- \cdot H_2O$ $M_r = 543.49$ Triclinic, $P\overline{1}$ a = 10.389 (2) Å b = 10.436 (2) Å c = 14.038 (3) Å $\alpha = 109.79$ (3)° $\beta = 90.70$ (3)°

Data collection

Mercury CCD diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{min} = 0.514, T_{max} = 0.673$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.112$ S = 1.084860 reflections 328 parameters 2 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4A\cdots Br1^{i}$	0.87 (3)	2.54 (3)	3.393 (3)	169 (5)
$O4-H4B\cdots Br1^{ii}$	0.88 (5)	2.52 (5)	3.399 (3)	176 (5)
C1−H1···Br1	0.96	2.65	3.587 (3)	165
C3-H3···O2 ⁱⁱⁱ	0.96	2.57	3.294 (4)	132
$C6-H6\cdots O4$	0.96	2.38	3.305 (5)	161
C10−H10···O4	0.96	2.59	3.463 (5)	152
C14-H14···Br1	0.96	2.88	3.823 (3)	167
$C18-H18A\cdots Br1^{iv}$	0.96	2.82	3.718 (3)	155

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) x + 1, y, z; (iv) -x + 2, -y + 2, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (İÜ BAP: 2008/ Güdümlü 3) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2459).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg. 32, 6-14.
- Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2009). Acta Cryst. E65, 0121–0122.

- Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
- Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371–2374.
- Herrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.
- Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685–692.
- Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142–2149.

supplementary materials

Acta Cryst. (2009). E65, o208-o209 [doi:10.1107/S1600536808043250]

1-(4-tert-Butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium bromide monohydrate

H. Arslan, D. VanDerveer, S. Demir, I. Özdemir and B. Çetinkaya

Comment

N-heterocyclic carbenes have attracted much interest as a new class of compound in organometallic chemistry. The applications of *N*-heterocyclic carbenes were first reported by Herrmann in 1998 (Herrmann *et al.*, 1998). Recently, Herrmann *et al.* and other researchers have designed new *N*-heterocyclic carbene compounds and have used them to prepare new catalysts for Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann, 2002; Herrmann *et al.*, 1995; Navarro *et al.*, 2006; Arduengo & Krafczyc, 1998).

Recently, we have focused on the synthesis, characterization and use of palladium, platinum and ruthenium *N*-heterocyclic carbene complexes as catalysts for Suzuki-Miyura and Heck reactions (Yaşar *et al.*, 2008; Arslan *et al.*, 2009, and references therein).

In the present work, we report the preparation and characterization of a novel *N*-heterocyclic carbene derivative, 1-(4*tert*-butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium bromide monohydrate, (I). The compound was purified by re-crystallization from ethanol:diethylether mixture (1:1) and characterized by elemental analysis, ¹H and ¹³C-NMR and IR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.

The molecular structure of the title compound is depicted in Figure 1. The crystal structure is composed of a 1-(4-*tert*butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium cation, a Br anion and solvent water molecules. All bond lengths in (I) are in normal ranges (Allen *et al.*,1987). The benzimidazole ring is almost coplanar with a maximum and a minimum deviation of 0.016 (2) Å for atom C2 and, 0.002 (2) Å for atom C6, respectively. In the crystal structure, π ··· π stacking interactions occurs between parallel benzimidazole rings, with a face-face separation of 3.441 Å (Figure 2) (Macrae *et al.*, 2006). The dihedral angle between the benzimidazole ring and 4-*tert*-butylbenzyl and 3,4,5-trimethoxybenzyl groups are 70.23 (3)° and 73.48 (3) °, respectively.

The C—N bond lengths for the investigated compound are all shorter than the average single C—N bond length of 1.48 Å, being N1—C1 = 1.329 (3) Å, N2—C1 =1.325 (3) Å, N1—C7 = 1.389 (3) Å, and N2—C2 = 1.391 (3) Å thus showing varying degrees of double bond character in these C—N bonds. The other CN bond lengths are in agreement with the expected 1.48 Å C—N single bond lengths. This information indicates a partial electron delocalization within the C7—N1—C1—N2—C2 fragment. The N1—C1—N2 bond angle is also consistent with this hypothesis.

The crystal packing is shown in Figure 3. The intermolecular C—H···Br and O—H···Br hydrogen bonds (Figure 4, Table 1) and π ··· π stacking interactions link the molecules of the title compound.

Experimental

4-tertbutylbenzyl bromide (2.27 g, 10.0 mmol) was slowly added to a solution of 1-(3,4,5-trimethoxylbenzyl) benzimidazole (II) (2.98 g, 10.0 mmol) in DMF (5 mL) and the resulting mixture was stirred at room temperature for 5 h (Scheme 2).

supplementary materials

Diethylether (10 ml) was added to obtain a white crystalline solid which was filtered off. The solid was washed with diethylether (3 *x* 10 ml) dried under vacuum and the crude product was re-crystallized from ethanole/diethylether. *M*.p. = 246–247°C; yield 4.47 g, 85%; $v_{(CN)} = 1594 \text{ cm}^{-1.1}$ H NMR (δ , 200.13 MHz, CDCl₃): 1.25 (s, 9H, CH₂C₆H₄C(CH₃)₃-*p*); 3.86 and 3.79 (s, 9H, CH₂C₆H₂(OCH₃)₃-3,4,5); 5.81 (s,4*H*, CH₂C₆H₂(OCH₃)₃-3,4,5 and CH₂C₆H₄C(CH₃)₃-*p*); 6.90 (s, 2H, CH₂C₆H₂(OCH₃)₃-3,4,5); 7.33 and 7.48 (m, 8H, NC₆H₄N and CH₂C₆H₄C(CH₃)₃-*p*); 11.64 (s, 1H, NCHN). ¹³C NMR (δ , 50 MHz, CDCl₃): 31.6 (CH₂C₆H₄C(CH₃)₃-*p*); 35.1 (CH₂C₆H₄C(CH₃)₃-*p*); 51.6 (CH₂C₆H₄C(CH₃)₃-*p*); 52.1 (CH₂C₆H₂(OCH₃)₃-3,4,5); 57.2 and 61.2 (CH₂C₆H₂(OCH₃)₃-3,4,5); 106.5, 131.7, 138.9 and 152.9 (CH₂C₆H₂(OCH₃)₃-3,4,5); 114.2, 127.5, 128.7, 130.1, 131.8 and 143.2 (NC₆H₄N); 114.1, 126.7, 128.5 and 130.9 (CH₂C₆H₄C(CH₃)₃-*p*); 154.2 (NCHN). Anal. Found: C, 63.96; H, 6.28; N: 5.35. Calc. for C₂₈H₃₃N₂O₃Br: C, 64.00; H, 6.33; N, 5.33.

Refinement

All H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and $U_{iso}(H) = 1.5U_{eq}(C)$ of the attached C atom for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. The water H atoms were located from a Fourier map and their distances were constrained to 0.86 Å and the $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A packing diagram for (I).

Fig. 3. A packing diagram for (I).

1-(4-tert-Butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium bromide monohydrate

Crystal data

$C_{28}H_{33}N_2O_3^+ \cdot Br^- \cdot H_2O$	<i>Z</i> = 2
$M_r = 543.49$	$F_{000} = 568$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.303 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.389 (2) Å	Cell parameters from 4659 reflections
b = 10.436 (2) Å	$\theta = 3.2 - 26.4^{\circ}$
c = 14.038 (3) Å	$\mu = 1.52 \text{ mm}^{-1}$
$\alpha = 109.79 \ (3)^{\circ}$	T = 298 (2) K
$\beta = 90.70 \ (3)^{\circ}$	Rod, colorless
$\gamma = 103.57 \ (3)^{\circ}$	$0.48 \times 0.29 \times 0.26 \text{ mm}$
V = 1385.1 (6) Å ³	

Data collection

Mercury CCD diffractometer	4860 independent reflections
Radiation source: Sealed Tube	3921 reflections with $I > 2\sigma(I)$
Monochromator: Graphite Monochromator	$R_{\rm int} = 0.022$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (REQAB; Jacobson, 1998)	$k = -12 \rightarrow 12$
$T_{\min} = 0.514, \ T_{\max} = 0.673$	$l = -16 \rightarrow 16$
11938 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 0.6557P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\text{max}} = 0.001$
4860 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
328 parameters	$\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.75295 (3)	0.93707 (4)	0.51515 (3)	0.06917 (15)
N1	0.8315 (2)	0.5830 (2)	0.57685 (15)	0.0384 (5)
N2	1.0326 (2)	0.7189 (2)	0.62364 (16)	0.0407 (5)
C1	0.9118 (3)	0.7064 (3)	0.5843 (2)	0.0439 (6)
H1	0.8858	0.7766	0.5640	0.053*
C2	1.0322 (2)	0.5974 (2)	0.64403 (18)	0.0363 (5)
C3	1.1313 (3)	0.5558 (3)	0.6834 (2)	0.0497 (7)
Н3	1.2196	0.6159	0.7050	0.060*
C4	1.0966 (3)	0.4233 (3)	0.6901 (2)	0.0609 (8)
H4	1.1626	0.3902	0.7168	0.073*
C5	0.9681 (3)	0.3364 (3)	0.6591 (2)	0.0573 (7)
Н5	0.9483	0.2449	0.6650	0.069*
C6	0.8695 (3)	0.3772 (3)	0.6207 (2)	0.0449 (6)
H6	0.7811	0.3170	0.5997	0.054*
C7	0.9039 (2)	0.5104 (2)	0.61354 (18)	0.0351 (5)
C8	0.6876 (2)	0.5379 (3)	0.5428 (2)	0.0454 (6)
H8A	0.6617	0.4377	0.5084	0.054*
H8B	0.6699	0.5814	0.4955	0.054*
C9	0.6061 (2)	0.5776 (3)	0.6319 (2)	0.0438 (6)
C10	0.5443 (3)	0.4785 (3)	0.6729 (2)	0.0456 (6)
H10	0.5523	0.3835	0.6449	0.055*
C11	0.4705 (3)	0.5178 (3)	0.7550 (2)	0.0521 (7)
C12	0.4583 (3)	0.6547 (3)	0.7952 (2)	0.0537 (7)
C13	0.5222 (3)	0.7534 (3)	0.7543 (2)	0.0553 (7)
C14	0.5963 (3)	0.7155 (3)	0.6720 (2)	0.0508 (7)

H14	0.6399	0.7839	0.6435	0.061*
C15	0.4234 (4)	0.2906 (4)	0.7695 (3)	0.0873 (12)
H15A	0.3873	0.2414	0.6998	0.131*
H15B	0.3783	0.2416	0.8112	0.131*
H15C	0.5166	0.2951	0.7756	0.131*
C16	0.4304 (4)	0.7401 (6)	0.9699 (3)	0.1083 (17)
H16A	0.4738	0.6735	0.9805	0.162*
H16B	0.3620	0.7526	1.0150	0.162*
H16C	0.4944	0.8286	0.9835	0.162*
C17	0.5773 (7)	0.9936 (4)	0.7672 (4)	0.119 (2)
H17A	0.6705	0.9984	0.7736	0.179*
H17B	0.5622	1.0823	0.8082	0.179*
H17C	0.5478	0.9731	0.6973	0.179*
C18	1.1457 (3)	0.8450 (3)	0.6461 (2)	0.0536 (7)
H18A	1.1451	0.8826	0.5925	0.064*
H18B	1.2277	0.8182	0.6483	0.064*
C19	1.1387 (3)	0.9570 (3)	0.7460 (2)	0.0450 (6)
C20	1.0657 (4)	1.0516 (3)	0.7490 (2)	0.0671 (9)
H20	1.0205	1.0466	0.6873	0.081*
C21	1.0563 (4)	1.1546 (3)	0.8403 (2)	0.0677 (9)
H21	1.0048	1.2198	0.8403	0.081*
C22	1.1192 (3)	1.1659 (3)	0.9317 (2)	0.0452 (6)
C23	1.1931 (3)	1.0704 (3)	0.9268 (2)	0.0532 (7)
H23	1.2390	1.0752	0.9883	0.064*
C24	1.2033 (3)	0.9667 (3)	0.8350 (2)	0.0533 (7)
H24	1.2558	0.9019	0.8342	0.064*
C25	1.1111 (3)	1.2836 (3)	1.0308 (2)	0.0591 (8)
C26	0.9702 (4)	1.3046 (5)	1.0365 (3)	0.0903 (13)
H26A	0.9665	1.3779	1.0993	0.135*
H26B	0.9085	1.2186	1.0334	0.135*
H26C	0.9472	1.3306	0.9804	0.135*
C27	1.2089 (5)	1.4190 (4)	1.0328 (4)	0.1013 (15)
H27A	1.2976	1.4066	1.0315	0.152*
H27B	1.2037	1.4947	1.0937	0.152*
H27C	1.1868	1.4408	0.9745	0.152*
C28	1.1443 (4)	1.2485 (5)	1.1241 (3)	0.0840 (11)
H28A	1.2353	1.2435	1.1266	0.126*
H28B	1.0870	1.1594	1.1196	0.126*
H28C	1.1315	1.3204	1.1846	0.126*
01	0.4055 (2)	0.4294 (3)	0.80195 (18)	0.0717 (6)
O2	0.3740 (2)	0.6898 (3)	0.86948 (17)	0.0741 (7)
O3	0.5058 (3)	0.8868 (3)	0.8002 (2)	0.0870 (8)
O4	0.5832 (3)	0.1696 (3)	0.4946 (3)	0.0969 (10)
H4A	0.499 (2)	0.144 (6)	0.501 (4)	0.145*
H4B	0.623 (5)	0.107 (5)	0.501 (4)	0.145*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0556 (2)	0.0784 (2)	0.0980 (3)	0.02072 (16)	0.01227 (17)	0.0592 (2)
N1	0.0361 (11)	0.0451 (11)	0.0394 (12)	0.0158 (9)	0.0067 (9)	0.0176 (9)
N2	0.0412 (12)	0.0386 (11)	0.0437 (12)	0.0106 (9)	0.0121 (9)	0.0156 (9)
C1	0.0482 (15)	0.0452 (14)	0.0470 (15)	0.0210 (12)	0.0139 (12)	0.0208 (12)
C2	0.0364 (12)	0.0393 (12)	0.0342 (13)	0.0132 (10)	0.0078 (10)	0.0117 (10)
C3	0.0378 (14)	0.0634 (17)	0.0469 (16)	0.0149 (13)	0.0004 (12)	0.0169 (13)
C4	0.0558 (18)	0.073 (2)	0.067 (2)	0.0308 (16)	-0.0007 (15)	0.0315 (16)
C5	0.067 (2)	0.0494 (16)	0.0648 (19)	0.0205 (15)	0.0037 (15)	0.0284 (14)
C6	0.0463 (15)	0.0391 (13)	0.0477 (15)	0.0082 (11)	0.0045 (12)	0.0148 (11)
C7	0.0348 (12)	0.0396 (12)	0.0330 (12)	0.0147 (10)	0.0060 (10)	0.0119 (10)
C8	0.0360 (13)	0.0599 (16)	0.0433 (15)	0.0190 (12)	0.0027 (11)	0.0173 (12)
С9	0.0329 (13)	0.0567 (15)	0.0432 (14)	0.0176 (12)	0.0004 (11)	0.0155 (12)
C10	0.0366 (13)	0.0535 (15)	0.0483 (16)	0.0120 (12)	0.0020 (11)	0.0195 (12)
C11	0.0363 (14)	0.0673 (18)	0.0546 (17)	0.0098 (13)	0.0039 (12)	0.0260 (14)
C12	0.0355 (14)	0.079 (2)	0.0471 (16)	0.0209 (14)	0.0077 (12)	0.0187 (14)
C13	0.0541 (17)	0.0633 (18)	0.0550 (17)	0.0314 (15)	0.0114 (14)	0.0175 (14)
C14	0.0493 (16)	0.0589 (17)	0.0537 (17)	0.0222 (13)	0.0107 (13)	0.0260 (13)
C15	0.091 (3)	0.081 (3)	0.099 (3)	0.006 (2)	0.019 (2)	0.054 (2)
C16	0.078 (3)	0.170 (5)	0.054 (2)	0.022 (3)	0.013 (2)	0.016 (3)
C17	0.195 (6)	0.063 (2)	0.112 (4)	0.055 (3)	0.059 (4)	0.030(2)
C18	0.0514 (16)	0.0446 (15)	0.0592 (18)	0.0025 (12)	0.0187 (14)	0.0175 (13)
C19	0.0452 (14)	0.0382 (13)	0.0515 (16)	0.0060 (11)	0.0132 (12)	0.0184 (11)
C20	0.097 (3)	0.0610 (19)	0.0488 (18)	0.0340 (18)	-0.0027 (17)	0.0174 (14)
C21	0.097 (3)	0.0613 (19)	0.0550 (19)	0.0438 (19)	0.0010 (18)	0.0179 (15)
C22	0.0462 (15)	0.0448 (14)	0.0458 (15)	0.0110 (12)	0.0085 (12)	0.0176 (12)
C23	0.0498 (16)	0.0567 (17)	0.0518 (17)	0.0147 (13)	-0.0032 (13)	0.0170 (13)
C24	0.0456 (15)	0.0498 (15)	0.0653 (19)	0.0185 (13)	0.0051 (14)	0.0170 (14)
C25	0.0622 (19)	0.0573 (17)	0.0523 (18)	0.0180 (15)	0.0122 (15)	0.0103 (14)
C26	0.091 (3)	0.113 (3)	0.072 (3)	0.056 (3)	0.024 (2)	0.018 (2)
C27	0.127 (4)	0.053 (2)	0.093 (3)	0.002 (2)	0.024 (3)	0.000 (2)
C28	0.087 (3)	0.112 (3)	0.0454 (19)	0.032 (2)	0.0076 (18)	0.0146 (19)
01	0.0604 (14)	0.0848 (16)	0.0758 (16)	0.0089 (12)	0.0203 (12)	0.0416 (13)
02	0.0492 (12)	0.1158 (19)	0.0554 (14)	0.0316 (13)	0.0177 (10)	0.0202 (13)
03	0.111 (2)	0.0785 (16)	0.0900 (19)	0.0592 (16)	0.0421 (16)	0.0286 (14)
O4	0.0533 (14)	0.0568 (14)	0.174 (3)	0.0082 (12)	-0.0014 (18)	0.0367 (17)
Geometric parat	neters (Å, °)					
N1—C1		1.329 (3)	С16—Н	16A	0.9599)
N1—C7		1.389 (3)	С16—Н	16B	0.9599)
N1—C8		1.478 (3)	С16—Н	16C	0.9599)
N2—C1		1.325 (3)	C17—O	03	1.407	(5)
N2—C2		1.391 (3)	С17—Н	[17A	0.9599)
N2-C18		1.481 (3)	С17—Н	17B	0.9599)

C17—H17C

0.9599

0.9600

C1—H1

C2—C3	1.382 (4)	C18—C19	1.507 (4)
C2—C7	1.393 (3)	C18—H18A	0.9600
C3—C4	1.380 (4)	C18—H18B	0.9600
С3—Н3	0.9600	C19—C20	1.370 (4)
C4—C5	1.394 (5)	C19—C24	1.372 (4)
C4—H4	0.9600	C20—C21	1.389 (4)
C5—C6	1.368 (4)	С20—Н20	0.9600
С5—Н5	0.9600	C21—C22	1.388 (4)
C6—C7	1.390 (3)	C21—H21	0.9600
С6—Н6	0.9600	C22—C23	1.380 (4)
C8—C9	1.513 (4)	C22—C25	1.532 (4)
C8—H8A	0.9600	C23—C24	1.399 (4)
C8—H8B	0.9600	С23—Н23	0.9600
C9—C10	1.383 (4)	C24—H24	0.9600
C9—C14	1.386 (4)	C25—C27	1.526 (5)
C10-C11	1.390 (4)	C25—C26	1.529 (5)
C10—H10	0.9600	C25—C28	1.530 (5)
C11—O1	1.369 (3)	C26—H26A	0.9599
C11—C12	1.385 (4)	C26—H26B	0.9599
C12—O2	1.380 (3)	С26—Н26С	0.9599
C12—C13	1.385 (4)	С27—Н27А	0.9599
C13—O3	1.374 (4)	С27—Н27В	0.9599
C13—C14	1.392 (4)	С27—Н27С	0.9599
C14—H14	0.9600	C28—H28A	0.9599
C15—O1	1.422 (5)	C28—H28B	0.9599
C15—H15A	0.9599	C28—H28C	0.9599
C15—H15B	0.9599	O4—H4A	0.87 (2)
C15—H15C	0.9599	O4—H4B	0.88 (5)
C16—O2	1.394 (5)		
C1—N1—C7	108.2 (2)	H16A—C16—H16C	109.5
C1—N1—C8	125.0 (2)	H16B—C16—H16C	109.5
C7—N1—C8	126.6 (2)	O3—C17—H17A	109.5
C1—N2—C2	108.4 (2)	O3—C17—H17B	109.5
C1—N2—C18	124.9 (2)	H17A—C17—H17B	109.5
C2—N2—C18	126.6 (2)	O3—C17—H17C	109.5
N2—C1—N1	110.5 (2)	H17A—C17—H17C	109.5
N2—C1—H1	124.8	H17B—C17—H17C	109.5
N1—C1—H1	124.8	N2—C18—C19	111.7 (2)
C3—C2—N2	132.0 (2)	N2	109.3
C3—C2—C7	121.6 (2)	C19-C18-H18A	109.3
N2—C2—C7	106.3 (2)	N2—C18—H18B	109.3
C4—C3—C2	116.5 (3)	C19-C18-H18B	109.3
С4—С3—Н3	121.7	H18A—C18—H18B	107.9
С2—С3—Н3	121.7	C20-C19-C24	118.7 (3)
C3—C4—C5	121.6 (3)	C20—C19—C18	119.6 (3)
C3—C4—H4	119.2	C24—C19—C18	121.7 (3)
С5—С4—Н4	119.2	C19—C20—C21	120.7 (3)
C6—C5—C4	122.1 (3)	С19—С20—Н20	119.7
С6—С5—Н5	118.9	С21—С20—Н20	119.7

supplementary materials

C4—C5—H5	118.9	C22—C21—C20	121.9 (3)
C5—C6—C7	116.5 (3)	C22—C21—H21	119.1
С5—С6—Н6	121.8	C20—C21—H21	119.1
С7—С6—Н6	121.8	C23—C22—C21	116.4 (3)
N1—C7—C6	131.8 (2)	C23—C22—C25	122.7 (3)
N1—C7—C2	106.6 (2)	C21—C22—C25	120.8 (3)
C6—C7—C2	121.6 (2)	C22—C23—C24	121.9 (3)
N1—C8—C9	111.2 (2)	С22—С23—Н23	119.1
N1—C8—H8A	109.4	C24—C23—H23	119.1
С9—С8—Н8А	109.4	C19—C24—C23	120.4 (3)
N1—C8—H8B	109.4	C19—C24—H24	119.8
С9—С8—Н8В	109.4	C23—C24—H24	119.8
H8A—C8—H8B	108.0	C27—C25—C26	109.6 (3)
C10—C9—C14	120.8 (2)	C27—C25—C28	110.0 (3)
C10—C9—C8	120.6 (2)	C26—C25—C28	107.1 (3)
C14—C9—C8	118.6 (2)	C27—C25—C22	108.2 (3)
C9—C10—C11	119.5 (3)	C26—C25—C22	110.5 (3)
С9—С10—Н10	120.3	C28—C25—C22	111.5 (3)
C11—C10—H10	120.3	С25—С26—Н26А	109.5
O1—C11—C12	114.9 (3)	С25—С26—Н26В	109.5
O1—C11—C10	124.7 (3)	H26A—C26—H26B	109.5
C12—C11—C10	120.4 (3)	С25—С26—Н26С	109.5
O2—C12—C11	120.2 (3)	H26A—C26—H26C	109.5
O2—C12—C13	120.0 (3)	H26B—C26—H26C	109.5
C11—C12—C13	119.6 (3)	С25—С27—Н27А	109.5
O3—C13—C12	115.3 (3)	С25—С27—Н27В	109.5
O3—C13—C14	124.1 (3)	H27A—C27—H27B	109.5
C12—C13—C14	120.6 (3)	С25—С27—Н27С	109.5
C9—C14—C13	119.1 (3)	H27A—C27—H27C	109.5
C9—C14—H14	120.5	H27B—C27—H27C	109.5
C13—C14—H14	120.5	C25—C28—H28A	109.5
O1—C15—H15A	109.5	C25—C28—H28B	109.5
O1-C15-H15B	109.5	H28A—C28—H28B	109.5
H15A—C15—H15B	109.5	C25—C28—H28C	109.5
O1—C15—H15C	109.5	H28A—C28—H28C	109.5
H15A—C15—H15C	109.5	H28B—C28—H28C	109.5
H15B—C15—H15C	109.5	C11—O1—C15	117.4 (3)
O2-C16-H16A	109.5	C12—O2—C16	116.4 (3)
O2—C16—H16B	109.5	C13—O3—C17	117.6 (3)
H16A—C16—H16B	109.5	H4A—O4—H4B	110 (5)
O2—C16—H16C	109.5		
C2—N2—C1—N1	-0.4(3)	O2—C12—C13—O3	6.4 (4)
C18—N2—C1—N1	-177.7 (2)	C11—C12—C13—O3	-179.1 (3)
C7—N1—C1—N2	0.1 (3)	O2—C12—C13—C14	-173.2 (3)
C8—N1—C1—N2	175.6 (2)	C11—C12—C13—C14	1.4 (5)
C1—N2—C2—C3	179.0 (3)	C10-C9-C14-C13	-0.4 (4)
C18—N2—C2—C3	-3.8 (4)	C8—C9—C14—C13	-179.7 (3)
C1—N2—C2—C7	0.6 (3)	O3—C13—C14—C9	179.9 (3)
C18—N2—C2—C7	177.8 (2)	C12—C13—C14—C9	-0.5 (4)

N2—C2—C3—C4	-177.6 (3)	C1—N2—C18—C19	81.3 (3)
C7—C2—C3—C4	0.5 (4)	C2—N2—C18—C19	-95.5 (3)
C2—C3—C4—C5	-0.3 (4)	N2-C18-C19-C20	-86.2 (3)
C3—C4—C5—C6	-0.1 (5)	N2-C18-C19-C24	93.5 (3)
C4—C5—C6—C7	0.2 (4)	C24—C19—C20—C21	-0.5 (5)
C1—N1—C7—C6	-178.2 (3)	C18—C19—C20—C21	179.1 (3)
C8—N1—C7—C6	6.3 (4)	C19—C20—C21—C22	-0.3 (6)
C1—N1—C7—C2	0.3 (3)	C20—C21—C22—C23	0.8 (5)
C8—N1—C7—C2	-175.2 (2)	C20-C21-C22-C25	177.9 (3)
C5—C6—C7—N1	178.4 (3)	C21—C22—C23—C24	-0.6 (4)
C5—C6—C7—C2	0.0 (4)	C25—C22—C23—C24	-177.7 (3)
C3—C2—C7—N1	-179.1 (2)	C20-C19-C24-C23	0.7 (4)
N2-C2-C7-N1	-0.5 (2)	C18—C19—C24—C23	-178.9 (3)
C3—C2—C7—C6	-0.4 (4)	C22—C23—C24—C19	-0.1 (4)
N2—C2—C7—C6	178.2 (2)	C23—C22—C25—C27	98.5 (4)
C1—N1—C8—C9	-90.8 (3)	C21—C22—C25—C27	-78.4 (4)
C7—N1—C8—C9	84.0 (3)	C23—C22—C25—C26	-141.5 (3)
N1-C8-C9-C10	-100.3 (3)	C21—C22—C25—C26	41.6 (4)
N1-C8-C9-C14	78.9 (3)	C23—C22—C25—C28	-22.5 (4)
C14—C9—C10—C11	0.5 (4)	C21—C22—C25—C28	160.6 (3)
C8—C9—C10—C11	179.7 (2)	C12-C11-O1-C15	-175.0 (3)
C9—C10—C11—O1	-179.8 (3)	C10-C11-O1-C15	5.2 (5)
C9—C10—C11—C12	0.3 (4)	C11—C12—O2—C16	92.8 (4)
O1—C11—C12—O2	-6.6 (4)	C13-C12-O2-C16	-92.7 (4)
C10-C11-C12-O2	173.3 (3)	C12-C13-O3-C17	175.0 (4)
O1—C11—C12—C13	178.9 (3)	C14—C13—O3—C17	-5.5 (6)
C10-C11-C12-C13	-1.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O4—H4A…Br1 ⁱ	0.87 (3)	2.54 (3)	3.393 (3)	169 (5)
O4—H4B…Br1 ⁱⁱ	0.88 (5)	2.52 (5)	3.399 (3)	176 (5)
C1—H1···Br1	0.96	2.65	3.587 (3)	165
C3—H3…O2 ⁱⁱⁱ	0.96	2.57	3.294 (4)	132
С6—Н6…О4	0.96	2.38	3.305 (5)	161
C10—H10…O4	0.96	2.59	3.463 (5)	152
C14—H14…Br1	0.96	2.88	3.823 (3)	167
C18—H18A…Br1 ^{iv}	0.96	2.82	3.718 (3)	155

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*+2, -*z*+1.

Fig. 1

Fig. 4

